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In Chapters 4 and 5, only the translational symmetries of Bravais lattices were
described and exploited. For example, the existence and basic properties of the
reciprocal lattice depend only on the existence of three primitive direct lattice vectors
a;, and not on any special relations that may hold among them.! The translational
symmetries are by far the most important for the general theory of solids. It is never-
theless clear from examples already described that Bravais lattices do fall naturally
into categories on the basis of symmetries other than translational. Simple hexagonal
Bravais lattices, for example, regardless of the c/a ratio, bear a closer resemblance
to one another than they do to any of the three types of cubic Bravais lattice we
have described.

It is the subject of crystallography to make such distinctions systematic and
precise.” Here we shall only indicate the basis for the rather elaborate crystallographic
classifications, giving some of the major categories and the language by which they
are described. In most applications what matters are the features of particular cases,
rather than a systematic general theory, so few solid state physicists need master the
full analysis of crystallography. Indeed, the reader with little taste for the subject can
skip this chapter entirely with little loss in understanding what follows, referring
back to it on occasion for the elucidation of arcane terms.

THE CLASSIFICATION OF BRAVAIS LATTICES

The problem of classifying all possible crystal structures is too complex to approach
directly, and we first consider only the classification of Bravais lattices.” From the
point of view of symmetry, a Bravais lattice is characterized by the specification of
all rigid operations* that take the lattice into itself. This set of operations is known
as the symmetry group or space group of the Bravais lattice.’

The operations in the symmetry group of a Bravais lattice include all translations
through lattice vectors. In addition, however, there will in general be rotations,
reflections. and inversions® that take the lattice into itself. A cubic Bravais lattice,
for example, is taken into itself by a rotation through 90° about a line of lattice points
in a (100 direction, a rotation through 120" about a line of lattice points in a {111)
direction, reflection of all points in a {100} lattice plane, etc.; a simple hexagonal
Bravais lattice is taken into itself by a rotation through 60° about a line of lattice
points parallel to the c-axis, reflectionina lattice plane perpendicular to the c-axis, etc.

1 An example of such a relation is the orthonormality condition a; * a; = a”d;;, holding for the
appropriate primitive vectors in a simple cubic Bravais lattice.

2 A detailed view of the subject can be found in M. J. Buerger, Elementary Crystallography, Wiley,
New York, 1963.

3 In this chapter a Bravais lattice is viewed as the crystal structure formed by placing at each point
of an abstract Bravais lattice a basis of maximum possible symmetry (such as a sphere, centered on the
lattice point) so that no symmetries of the point Bravais lattice are lost because of the insertion of the basis.

4 Qperations that preserve the distance between all lattice points.

s We shall avoid the language of mathematical group theory, since we shall make no use of the
analytical conclusions to which it leads.

6 Reflection in a plane replaces an object by its mirror image in that plane; inversion in a point P
takes the point with coordinates r (with respect to P as origin) into —r. All Bravais lattices have inversion
symmetry in any lattice point (Problem 1).
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Any symmetry operation of a Bravais lattice can be compounded out of a trans-
lation Ty through a lattice vector R and a rigid operation leaving at least one lattice
point fixed.” This is not immediately obvious. A simple cubic Bravais lattice, for
example, is left fixed by a rotation through 90° about a {100} axis that passes through
the center of a cubic primitive cell with lattice points at the eight vertices of the
cube. This is a rigid operation that leaves no lattice point fixed. However, it can be
compounded out of a translation through a Bravais lattice vector and a rotation

®© O ® O

op .jo‘ oy

® 06 © ®

(a)

90°

® o || o o|g o 6

(b)
Figure 7.1
(a) A simple cubic lattice is carried into itself by a rotation through 90
about an axis that contains no lattice points. The rotation axis is perpen-
dicular to the page, and only the four lattice points closest to the axis in
a single lattice plane are shown. (b) Illustrating how the same final result
can be compounded out of (at left) a translation through a lattice constant
and (at right) a rotation about the lattice point numbered 1.

about a line of lattice points, as illustrated in Figure 7.1. That such a representation
is always possible can be seen as follows:

Consider a symmetry operation S that leaves no lattice point fixed. Suppose it
takes the origin of the lattice O into the point R. Consider next the operation one gets
by first applying S, and then applying a translation through —R, which we denote
by T_g. The composite operation, which we call T_gS, is also a symmetry of the lattice.
but it leaves the origin fixed, since S transports the origin to R while T g carries R
back to the origin. Thus T .S is an operation that leaves at least one lattice point
(namely the origin) fixed. If, however, after performing the operation T ¢S we then
perform the operation Ty, the result is equivalent to the operation S alone. since the
final application of T just undoes the preceding application of T . Therefore § can
be compounded out of T S, which leaves a point fixed, and T;. which is a pure
translation.

Note that translation through a lattice vector (other than O) leaves no point fixed.
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Thus the full symmetry group of a Bravais lattice® contains only operations of
the following form:

1. Translations through Bravais lattice vectors:
2. Operations that leave a particular point of the lattice fixed;
3. Operations that can be constructed by successive applications of the operations

of type (1) or (2).

The Seven Crystal Systems

When examining nontranslational symmetries, one often considers not the entire
space group of a Bravais lattice, but only those operations that leave a particular
point fixed (i.e., the operations in category (2) above). This subset of the full symmetry
group of the Bravais lattice is called the point group of the Bravais lattice.

There turn out to be only seven distinct point groups that a Bravais lattice can
have.? Any crystal structure belongs to one of seven crystal systems, depending on
which of these seven point groups is the point group of its underlying Bravais lattice.
The seven crystal systems are enumerated in the next section.

(a) (b)

Figure 7.2
(a) Every symmetry operation of a cube is also a symmetry operation

of a regular octahedron, and vice versa. Thus the cubic group is
identical to the octahedral group. (b) Not every symmetry operation
of a cube is a symmetry operation of a regular tetrahedron. For
example, rotation through 90° about the indicated vertical axis takes
the cube into itself, but not the tetrahedron.

8 We shall see below that a general crystal structure can have addition
are not of types (1). (2). or (3). They are known as “'screw axes’” and “‘glide planes.”

9 Two point groups are identical if they contain precise
of all symmetry operations of a cube is identical to the set
dron. as can readily be seen by inscribing the octahedron suit
hand, the symmetry group of the cube is not equivalen
The cube has more symmetry operations (Figure 7.2b).

al symmetry operations that

ly the same operations. For example, the set
of all symmetry operations of a regular octahe-
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The Fourteen Bravais Lattices

When one relaxes the restriction to point operations and considers the full symmetry
group of the Bravais lattice, there turn out to be fourteen distinct space groups that a
Bravais lattice can have.'® Thus, from the point of view of symmetry. there are
fourteen different kinds of Bravais lattice. This enumeration was first done by M. L.
Frankenheim (1842). Frankenheim miscounted, however, reporting fifteen possibili-
ties. A. Bravais (1845) was the first to count the categories correctly.

Enumeration of the Seven Crystal Systems and Fourteen Bravais Lattices

We list below the seven crystal systems and the Bravais lattices belonging to each.
The number of Bravais lattices in a system is given in parentheses after the name of
the system:

Cubic (3) The cubic system contains those Bravais lattices whose point group is just
the symmetry group of a cube (Figure 7.3a). Three Bravais lattices with nonequivalent
space groups all have the cubic point group. They are the simple cubic, body-centered
cubic, and face-centered cubic. All three have been described in Chapter 4.

Tetragonal (2) One can reduce the symmetry of a cube by pulling on two opposite
faces to stretch it into a rectangular prism with a square base, but a height not equal
to the sides of the square (Figure 7.3b). The symmetry group of such an object is the
tetragonal group. By so stretching the simple cubic Bravais lattice one constructs the
simple tetragonal Bravais lattice, which can be characterized as a Bravais lattice
generated by three mutually perpendicular primitive vectors, only two of which
are of equal length. The third axis is called the c-axis. By similarly stretching the
body-centered and face-centered cubic lattices only one more Bravais lattice of the
tetragonal system is constructed, the centered tetragonal.

To see why there is no distinction between body-centered and face-centered te-
tragonal, consider Figure 7.4a, which is a representation of a centered tetragonal
Bravais lattice viewed along the c-axis. The points 2 lie in a lattice plane a distance

10" The equivalence of two Bravais lattice space groups is a somewhat more subtle notion than the
equivalence of two point groups (although both reduce to the concept of “‘isomorphism™ in abstract
theory). It is no longer enough to say that two space groups are equivalent if they have the same ope
for the operations of identical space groups can differ in inconsequential ways. For example. 1
cubic Bravais lattices with different lattice constants, @ and a’, are considered to have the sam
groups even though the translations in one are in steps of @, whereas the translations in the ot
steps of @’. Similarly, we would like to regard all simple hexagonal Bravais lattices as having id
groups, regardless of the value of ¢/a, which is clearly irrelevant to the total symmetry o e

We can get around this problem by noting that in such cases one can continuously deform z structure
of a given type into another of the same type without ever losing any of the symmetry ope :
the way. Thus one can uniformly expand the cube axes from a to a’, always maintainin
symmetry, or one can stretch (or shrink) the c-axis (or a-axis), always maintaining th xagonal
symmetry. Therefore two Bravais lattices can be said to have the same space group possible con-
tinuously to transform one into the other in such a way that every symmetry or 1e first is con-
tinuously transformed into a symmetry operation of the second, and there are no additional symmetry
operations of the second not so obtained from symmetry operations of the first
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Figure 7.3
Objects whose symmetries
are the point-group symme-
% tries of Bravais lattices be-
longing to the seven crystal
systems: (a) cubic: (b) te-
tragonal: (c) orthorhombic;
(d) monoclinic: (e) triclinic;
(f) trigonal: (g) hexagonal.
j |

¢/2 from the lattice plane containing the pomts 1. If ¢ = a, the structure is nothing
but a body-centered cubic Bravais lattice, and for general ¢ it can evidently be viewed
as the result of stretching the bee lattice along the c-axis. However, precisely the same
lattice can also be viewed along the c-axis. as in Figure 7.4b, with the lattice planes
regarded as centered square arrays of sided’ = 7u Ifc =d/2 = aly /2, the struc-
ture is nothing but a face- centered cubic Bravals lattice, and for general ¢ it can
therefore be viewed as the result of stretching the fec lattice along the c-axis.
Putting it the other way around, face-centered cubic and body-centered cubic are
both special cases of centered tetragonal, in which the particular value of the c/a
ratio introduces extra symmetries that are revealed most clearly when one views the

lattice as in Figure 7.4a (bee) or Figure 7. 4b (fcc).

Orthorhombic (4) Continuing to still less symmetric deformations of the cube, one
can reduce tetragonal symmetry by deforming the square faces of the object in Figure
7 3b into rectangles, producing an object with mutually perpendicular sides of three
unequal lengths (Figure 7.3¢). The orthorhombic group is the symmetry group of
such an object. By stretching a simple tetragonal lattice along one of the a-axes
(Figure 7.5a and b), one produces the simple or thorhombic Bravais lattice. However,
by stretching the simple tetragonal lattice along a square diagonal (Figure 7.5¢ and
d) one produces a second Bravais lattice of orthorhombic point group symmetry, the

base-centered orthorhombic.
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(a) (b)

Figure 7.4

Two ways of viewing the same centered tetragonal Bravais lattice. The view is along the
c-axis. The points labeled 1 lie in a lattice plane perpendicular to the ¢-axis, and the points
labeled 2 lie in a parallel lattice plane a distance ¢/2 away. In (a) the points | are viewed
as a simple square array, stressing that centered tetragonal is a distortion of body-centered
cubic. In (b) the points | are viewed as a centered square array, stressing that centered
tetragonal is also a distortion of face-centered cubic.

(a)

fc) (d)

Figure 7.5
Two ways of deforming the same simple tetragonal Bravais lattice. The
the c-axis, and a single lattice plane is shown. In (a) bonds are drawn *
the points in the plane can be viewed as a simple square array. Stret

of that array leads to the rectangular nets (b), stacked directly above
resulting Bravais lattice is simple orthorhombic. In (c¢) lines

array. Stretching along a side of that array (i.e.. along a
emphasized in (a)) yields the centered rectangular nets (d)
another. The resulting Bravais lattice is base-centered orthorhomba
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In the same way, one can reduce the point symmetry of the centered tetragonal Trigon
lattice to orthorhombic in two ways, stretching either along one set of parallel lines produg
drawn in Figure 7.4a to produce body-centered orthorhombic, or along one set of by so d
parallel lines in Figure 7.4b, producing face-centered orthorhombic. Bravai

These four Bravais lattices exhaust the orthorhombic system. equal :
Monoclinic (2) One can reduce orthorhombic symmetry by distorting the rectan- Fs
gular faces perpendicular to the c-axis in Figure 7.3c into general parallelograms. Hexag
The symmetry group of the resulting object (Figure 7.3d) is the monoclinic group. with a
By so distorting the simple orthorhombic Bravais lattice one produces the simple (descm
monoclinic Bravais lattice, which has no symmetries other than those required by the m the
fact that it can be generated by three primitive vectors, one of which is perpendicular The
to the plane of the other two. Similarly, distorting the base-centered orthorhombic the po
Bravais lattice produces a lattice with the same simple monoclinic space group. How- Franks
ever. so distorting either the face-centered or body-centered orthorhombic Bravais these ¢
lattices produces the centered monoclinic Bravais lattice (Figure 7.6). what 1

Figure 7.6
View along the c-axis of a centered monoclinic THE
Bravais lattice. The points labeled 1 lie in a
lattice plane perpendicular to the c-axis. The We ne
points labeled 2 lie in a parallel lattice plane a o ger
distance ¢/2 away, and are directly above the arbitr;
centers of the parallelograms formed by the svmm
points 1. the ot
requit
Note that the two monoclinic Bravais lattices correspond to the two tetragonal IS gres
ones. The doubling in the orthorhombic case reflects the fact that a rectangular net with :
and a centered rectangular net have distinct two-dimensional symmetry groups, while the fo
a square net and centered square net are not distinct, nor are a parallelogram net symm
and centered parallelogram net. Th
Triclinic (1) The destruction of the cube is completed by tilting the c-axis in Figure E&
7.3d so that it is no longer perpendicular to the other two, resulting in the object _—
pictured in Figure 7.3¢, upon which there are no restrictions except that pairs of oppo- E ;_
site faces are parallel. By so distorting either monoclinic Bravais lattice one constructs ;_e ;
the triclinic Bravais lattice. This is the Bravais lattice generated by three primitive . .
vectors with ne special relationships to one another, and is therefore the Bravais . Tal
lattice of minimum symmetry. The triclinic point group is not, however, the group -:I"n
of an object without any symmetry, since any Bravais lattice is invariant under an -
inversion in a lattice point. That, however, is the only symmetry required by the ‘..:711
general definition of a Bravais lattice, and therefore the only operation'! in the 2 -
triclinic point group.

By so torturing a cube we have arrived at twelve of the fourteen Bravais lattices —
and five of the seven crystal systems. We can find the thirteenth and sixth by returning =
to the original cube and distorting it differently: —

11 QOther than the identity operation (which leaves the lattice where it is), which is always counted E = o
among the members of a symmetry group. D o3




agonal
el lines
- set of

rectan-
)grams.
group.
- simple
| by the
dicular
hombic
. How-
Bravais

mnoclinic
lie in a
xis. The
> plane a
bove the
i by the

ragonal
ular net
s, while
ram net

1 Figure
= object
f oppo-
nstructs
rimitive
Bravais
e group
nder an
| by the
! in the

 lattices
turning

s counted

The Crystallographic Point Groups 119

Trigonal (1) The trigonal point group describes the symmetry of the object one
produces by stretching a cube along a body diagonal (Figure 7.3f). The lattice made
by so distorting any of the three cubic Bravais lattices is the rhombohedral (or trigonal)
Bravais lattice. It is generated by three primitive vectors of equal length that make
equal angles with one another.!?

Finally, unrelated to the cube, is:

Hexagonal (I) The hexagonal point group is the symmetry group of a right prism
with a regular hexagon as base (Figure 7.3g). The simple hexagonal Bravais lattice
(described in Chapter 4) has the hexagonal point group and is the only Bravais lattice
in the hexagonal system.!3

The seven crystal systems and fourteen Bravais lattices described above exhaust
the possibilities. This is far from obvious (or the lattices would have been known as
Frankenheim lattices). However, it is of no practical importance to understand why
these are the only distinct cases. It is enough to know why the categories exist, and
what they are.

THE CRYSTALLOGRAPHIC POINT GROUPS AND SPACE GROUPS

We next describe the results of a similar analysis, applied not to Bravais lattices but
to general crystal structures. We consider the structure obtained by translating an
arbitrary object through the vectors of any Bravais lattice, and try to classify the
symmetry groups of the arrays so obtained. These depend both on the symmetry of
the object and the symmetry of the Bravais lattice. Because the objects are no longer
required to have maximum (e.g., spherical) symmetry, the number of symmetry groups
is greatly increased: there turn out to be 230 different symmetry groups that a lattice
with a basis can have, known as the 230 space groups. (This is to be compared with
the fourteen space groups that result when the basis is required to be completely
symmetric.)

The possible point groups of a general crystal structure have also been enumerated.
These describe the symmetry operations that take the crystal structure into itself
while leaving one point fixed (i.e., the nontranslational symmetries). There are thirty-
two distinct point groups that a crystal structure can have, known as the thirty-two
crystallographic point groups. (This is to be compared with the seven point groups
one can have when the basis is required to have full symmetry.)

These various numbers and their relations to one another are summarized in
Table 7.1.

The thirty-two crystallographic point groups can be constructed out of the seven
Bravais lattice point groups by systematically considering all possible ways of re-
ducing the symmetry of the objects (Figure 7.3) characterized by these groups.

Each of the twenty-five new groups constructed in this way is associated with one

12 Special values of that angle may introduce extra symmetries, in which case the lattice may actualls

be one of the three cubic types. See, for example, Problem 2(a).

13 If one tries to produce further Bravais lattices from distortions of the simple hexagonal one Sncs
that changing the angle between the two primitive vectors of equal length perpendicular to th 3
base-centered orthorhombic lattice, changing their magnitudes as well leads to monoc
the c-axis from the perpendicular leads, in general, to triclinic.
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Table 7.1
POINT AND SPACE GROUPS OF BRAVAIS LATTICES AND CRYSTAL STRUCTURES
CRYSTAL STRUCTURE

BRAVAIS LATTICE
F ARBITRARY SYMMETRY)

(BASIS OF SPHERICAL SYMMETRY) (BASIS O
32

7
(“the 32 crystallographic point groups”)

Number of
(“the 7 crystal systems™)

point groups:

Number of 14 230
(“the 14 Bravais lattices™) (““the 230 space groups’)

space groups:
rding to the following rule: Any group constructed
by reducing the symmetry of an object characterized by a particular crystal system
belong to that system until the symmetry has been reduced sO far that
all of the remaining symmetry operations of the object are also found in a less sym-

metrical crystal system; when this happens the symmetry group of the object is
assigned to the less symmetrical system. Thus the crystal system ofa crystallographic
point group is that of the least symmetric”’ of the seven Bravais lattice point groups

containing every symmetry operation of the crystallographic group.

Cubic Figure 7.7

of the seven crystal systems acco

continues to

ymmetries among the seven crystal systems.

The hierarchy of s
Hexagonal Tetragonal Each Bravais lattice point group contains all those that can be
: i reached from it by moving in the direction of the arTows.
Trigonal Orthorhombic
Monoclinic
Triclinic

Objects with the symmetries of the five crystallographic point groups in the cubic
system are pictured in Table 7.2. Objects with the symmetries of the twenty-seven

noncubic crystallographic groups are shown in Table 7.3:
Crystallographic point groups may contain the following kinds of symmetry

operations:
Multiples of 27/n about Some AXis The axis is called

1. Rotations through Integral
easily shown (Problem 6) that a Bravais lattice can

an n-fold rotation axis. It is

14 Thenotion of a hierarchy of crystal system symmetries needs some elaboration. In Figure 7.7 each

crystal system is more symmetric than any that can be reached from it by moving along arrows; i.e., the
corresponding Bravais lattice point group has no operations that are not also in the groups from which it
can be so reached. There appears to be some ambiguity in this scheme since the four pairs cubic-hexagonal,
tetragonal—hexagonal. tetragonal-trigonal. and orthorhombic-trigonal are not ordered by the arrows.
Thus one might imagine an object all of whose symmetry operations belonged to both the tetragonal and
trigonal groups but to no group lower than both of these. The symmetry group of such an object could
be said to belong to either the tetragonal or trigonal systems, since there would be no unique system of
lowest symmetry. 1t turns out, however, both in this and the other three ambiguous cases, that all symmetry
elements common to both groupsina pair also belong to a group that is lower than both in the hierarchy.
(For example, any element common to both the tetragonal and the trigonal groups also belongs to the

monoclinic group.) There is therefore always a unique group of lowest symmetry.

OF
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Table 7.2
OBJECTS WITH THE SYMMETRY OF THE FIVE CUBIC CRYSTALLOGRAPHIC
POINT GROUPS*

“To the left of each object is the Schoenflies name of its symmetry group and to the right is the
international name. The unpictured faces may be deduced from the fact that rotation about a
body diagonal through 120" is a symmetry operation for all five objects. (Such an axis is shown
on the undecorated cube.)

contain only 2-, 3-, 4-, or 6-fold axes. Since the crystallographic point groups are
contained in the Bravais lattice point groups, they too can only have these axes.

2. Rotation-Reflections Even when a rotation through 2n/n is not a symmetry
element, sometimes such a rotation followed by a reflection in a plane perpen-
dicular to the axis may be. The axis is then called an n-fold rotation-reflection
axis. For example, the groups S¢ and S, (Table 7.3) have 6- and 4-fold rotation-
reflection axes.

3. Rotation-Inversions Similarly, sometimes a rotation through 27/n followed by an
inversion in a point lying on the rotation axis is a symmetry element. even though
such a rotation by itself is not. The axis is then called an n-fold rotation-inversion
axis. The axis in S, (Table 7.3), for example, is also a 4-fold rotation-inversion
axis. However, the axis in Sg is only a 3-fold rotation-inversion axis.

4. Reflections A reflection takes every point into its mirror image in a plane, known
as a mirror plane.
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Table 7.3 Tabl
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Table 7.3 (continued)

The unpictured faces can be deduced by imagining the representative objects to be rotated about
the n-fold axis, which is always vertical. The Schoenflies name of the group is given to the left
of the representative object, and the international designation the right. The groups are organized
into vertical columns by crystal system, and into horizontal rows by the Schoenflies or inter-
national type. Note that the Schoenflies categories (given on the extreme left of the table) divide
up the groups somewhat differently from the international categories (given on the extreme right).
In most (but not all) cases the representative objects have been made by simply decorating in the
appropriate symmetry reducing manner the faces of the objects used to represent the crystal
systems (Bravais lattice point groups) in Figure 7.3. Exceptions are the trigonal groups and two
of the hexagonal groups, where the figures have been changed to emphasize the similarity within
the (horizontal) Schoenflies categories. For a representation of the trigonal groups by decorations
of the object in Figure 7.3f, see Problem 4.

5. Inversions An inversion has a single fixed point. If that point is taken as the
origin, then every other point r is taken into —r.

Point-Group Nomenclature

Two nomenclatural systems, the Schénflies and the international, are in wide use.
Both designations are given in Tables 7.2 and 7.3.

Schoenflies Notation for the Noncubic Crystallographic Point Groups The Schoenflies
categories are illustrated by grouping the rows in Table 7.3 according to the labels
given on the left side. They are:!$

C,: These groups contain only an n-fold rotation axis.

C,.: Inaddition to the n-fold axis, these groups have a mirror plane that contains
the axis of rotation, plus as many additional mirror planes as the existence of
the n-fold axis requires.

Cun: These groups contain in addition to the n-fold axis, a single mirror plane that
is perpendicular to the axis.

S,: These groups contain only an n-fold rotation-reflection axis.

D,: In addition to an n-fold rotation axis, these groups contain a 2-fold axis
perpendicular to the n-fold axis, plus as many additional 2-fold axes as are
required by the existence of the n-fold axis.

D,;: These (the most symmetric of the groups) contain all the elements of D, plus
a mirror plane perpendicular to the n-fold axis.

D,;: These contain the elements of D, plus mirror planes containing the n-fold
axis, which bisect the angles between the 2-fold axes.

It is instructive to verify that the objects shown in Table 7.3 do indeed have the
symmetries required by their Schoenflies names.

International Notation for the Noncubic Crystallographic Point Groups The interna-
tional categories are illustrated by grouping the rows in Table 7.3 according to

'* Cstands for “cyclic.” D for “dihedral,” and § for “Spiegel” (mirror). The subscripts h, v, and d stand

for “horizontal,” “vertical,” and “diagonal,” and refer to the placement of the mirror planes with respect
to the n-fold axis, considered to be vertical. (The “diagonal” planes in D, are vertical and bisect the angles
between the 2-fold axes.)
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the labels given on the right side. Three categories are identical to the Schoenflies Ti
categories:

n is the same as C,.
nmm is the same as C,,. The two m’s refer to two distinct types of mirror planes

containing the n-fold axis. What they are is evident from the objects illustrating 6mm, The
4mm, and 2mm. These demonstrate that a 2j-fold axis takes a vertical mirror plane We s
into j mirror planes, but in addition j others automatically appear, bisecting the sell t
angles between adjacent planes in the first set. However, a (2j + 1)-fold axis takes a 8
mirror plane into 2j + 1 equivalent ones, and therefore'® Cj, is only called 3m. _:_t:;
122 is the same as D,,. The discussion is the same as for nmm, but now perpendicular -
7-fold axes are involved instead of vertical mirror planes. ::{-
The other international categories and their relation to those of Schoenflies are Tabd
as follows: ENU
n/m is the same as Cyp, except that the international system prefers to regard Cap ST
as containing a 6-fold rotation-inversion axis, making it 6 (see the next category). =
Note also that C,, becomes simply m, rather than 1/m. oy
71 is a group with an n-fold rotation-inversion axis. This category contains Cay, -
disguised as 6. It also contains S,, which goes nicely into 4. However, S becomes \'_::
3 and S, becomes T by virtue of the difference between rotation-reflection and T
rotation-inversion axes. -:-u
n22 abbreviated n/mmm, is just Duy, except that the international system prefers to T
regard D3, as containing a 6-fold rotation-inversion axis, making it 62m (see the next 3
category, and note the similarity to the ejection of Csy from n/m into f). Note also Toez
that 2/mmm is conventionally abbreviated further into mmm. The full-blown inter- _‘
national title is supposed to remind one that D,;, can be viewed as an n-fold axis with asl
a perpendicular mirror plane, festooned with two sets of perpendicular 2-fold axes, 1
each with its own perpendicular mirror planes.
72m is the same as D,q, except that D3, is included as 62m. The name is intended i
to suggest an n-fold rotation-inversion axis with a perpendicular 2-fold axis and a *::
vertical mirror plane. The n = 3 case is again exceptional, the full name being 33 il
(abbreviated 3m) to emphasize the fact that in this case the vertical mirror plane is ' g
perpendicular to the 2-fold axis.
Nomenclature for the Cubic Crystallographic Point Groups The Schoenflies and in- -
ternational names for the five cubic groups are given in Table 7.2. Oy is the full -
symmetry group of the cube (or octahedron, whence the O) including improper = Ta
operations,'” which the horizontal reflection plane (h) admits. O is the cubic (or =
octahedral) group without improper operations. Ty is the full symmetry group of the —_—
regular tetrahedron including all improper operations, T'is the group of the regular :”;
tetrahedron excluding all improper operations, and T, is what results when an -
inversion is added to T. —
= 3
16 In emphasizing the differences between odd- and even-fold axes, the international system, unlike __:
the Schoenflies, treats the 3-fold axis as a special case. =
17 Any operation that takes a right-handed object into a left-handed one is called improper. All others z
are proper. Operations containing an odd number of inversions or mirrorings are improper. -
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The international names for the cubic groups are conveniently distinguished from
those of the other crystallographic point groups by containing 3 as a second number,
referring to the 3-fold axis present in all the cubic groups.

The 230 Space Groups

We shall have mercifully little to say about the 230 space groups, except to point
out that the number is larger than one might have guessed. For each crystal system
one can construct a crystal structure with a different space group by placing an object
with the symmetries of each of the point groups of the system into each of the Bravais
lattices of the system. In this way, however, we find only 61 space groups, as shown
in Table 7.4.

Table 7.4
ENUMERATION OF SOME SIMPLE SPACE GROUPS

SYSTEM NUMBER OF POINT GROUPS NUMBER OF BRAVAIS LATTICES  PRODUCT
Cubic 5 3 15
Tetragonal 7 2 14
Orthorhombic 3 4 12
Monoclinic 3 2 6
Triclinic 2 1 2
Hexagonal 7 1 7
Trigonal 5 1 S
Totals 32 14 a

We can eke out five more by noting that an object with trigonal symmetry yields
a space group not yet enumerated, when placed in a hexagonal Bravais lattice.'®

18 Although the trigonal point group is contained in the hexagonal point group, the trigonal Bravais

lattice cannot be obtained from the simple hexagonal by an infinitesimal distortion. (This is in contrast
to all other pairs of systems connected by arrows in the symmetry hierarchy of Figure 7.7.) The trigonal
point group is contained in the hexagonal point group because the trigonal Bravais lattice can be viewed
as simple hexagonal with a three-point basis consisting of

o 1 1 1. 2 2 2
0; 3a,,3a,,3c; and 3a,,3a,, 3cC

As a result, placing a basis with a trigonal point group into a hexagonal Bravais lattice results in a different
space group from that obtained by placing the same basis into a trigonal lattice. In no other case is this
so. For example, a basis with tetragonal symmetry, when placed in a simple cubic lattice, yields exactly the
same space group as it would if placed in a simple tetragonal lattice (unless there happens to be a special
relation between the dimensions of the object and the length of the c-axis). This is reflected physically in the
fact that there are crystals that have trigonal bases in hexagonal Bravais lattices, but none with tetragonal
bases in cubic Bravais lattices. In the latter case there would be nothing in the structure of such an object
to require the c-axis to have the same length as the a-axes; if the lattice did remain cubic it would be a
mere coincidence. In contrast, a simple hexagonal Bravais lattice cannot distort continuously into a trigonal
one, and can therefore be held in its simple hexagonal form even by a basis with only trigonal symmetry.

Because trigonal point groups can characterize a crystal structure with a hexagonal Bravais lattice,
crystallographers sometimes maintain that there are only six crystal systems. This is because crystal-
lography emphasizes the point symmetry rather than the translational symmetry. From the point of view
of the Bravais lattice point groups, however, there are unquestionably seven crystal systems: the point
groups D3, and Dg, are both the point groups of Bravais lattices, and are not equivalent.
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Another seven arise from cases in which an object with the symmetry of a given point
group can be oriented in more than one way in a given Bravais lattice so that more
than one space group arises. These 73 space groups are called symmorphic.

The majority of the space groups are nonsymmorphic, containing additional oper-
ations that cannot be simply compounded out of Bravais lattice translations and
point-group operations. For there to be such additional operations it is essential that
there be some special relation between the dimensions of the basis and the dimensions
of the Bravais lattice. When the basis does have a size suitably matched to the primitive
vectors of the lattice, two new types of operations may arise:

1. Screw Axes A crystal structure with a screw axis is brought into coincidence
with itself by translation through a vector notin the Bravais lattice, followed by a
rotation about the axis defined by the translation.

2. Glide Planes A crystal structure with a glide plane is brought into coincidence
with itself by translation through a vector not in the Bravais lattice, followed by
a reflection in a plane containing that vector.

The hexagonal close-packed structure offers examples of both types of operation,
as shown in Figure 7.8. They occur only because the separation of the two basis
points along the c-axis is precisely half the distance between lattice planes.

Figure 7.8
The hexagonal close-packed structure
viewed along the c-axis. Lattice planes

® @ perpendicular to the c-axis are separated

©) ©) ©) by ¢/2 and contain, alternately, points of
type | and points of type 2. The line parallel

©) @ ® to the c-axis passing through the dot in the
center of the figure is a screw axis: the

@ @ @ @ structure is invariant under a translation
————— through ¢/2 along the axis followed by a

rotation of 60° (but it is not invariant under

©) @ @ @ ; : :
@ @ @ either the translation or rota}xon al.one.)
The plane parallel to the c-axis that inter-
sects the figure in the dashed line is a glide
©) @ @ plane: the structure is invariant under a
@ @ translation through ¢/2 along the c-axis

followed by a reflection in the glide plane
(but is not invariant under either the trans-
lation or reflection alone).

There are both Schoenflies and international systems of space-group nomenclature,
which can be found, on the few occasions they may be needed. in the book by Buerger

cited in footnote 2.
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EXAMPLES AMONG THE ELEMENTS

In Chapter 4 we listed those elements with face-centered cubic. body-centered cubic,
hexagonal close-packed, or diamond crystal structures. Over 70 percent of the ele-
ments fall into these four categories. The remaining ones are scattered among a variety
of crystal structures, most with polyatomic primitive cells that are sometimes quite
complex. We conclude this chapter with a few further examples listed in Table 7.5,
7.6, and 7.7. Data are from Wyckoff (cited on page 70) and are for room temperature
and normal atmospheric pressure, unless stated otherwise.

Table 7.5
ELEMENTS WITH RHOMBOHEDRAL (TRIGONAL) BRAVAIS LAT-
TICES*®
ELEMENT ATOMS I
a(A) 0 PRIMITIVE CELL BASIS
Hg (5 K) 2.99 70°45" | x=0
As 4.13 54°10° 2 x = 10.226
Sb 4.51 57°6’ 2 x = +0.233
Bi 4.75 57°14° 2 %= 10237
Sm 9.00 23°13 3 x =0, £0.222

“ The common length of the primitive vectors is a, and the angle between any
two of them is 6. In all cases the basis points expressed in terms of these primitive
vectors have the form x(a, +a, +a;). Note (Problem 2(b)) that arsenic, antimony,
and bismuth are quite close to a simple cubic lattice, distorted along a body

diagonal.
Table 7.6
ELEMENTS WITH TETRAGONAL BRAVAIS LATTICES®
ELEMENT a(A) c(A) BASIS
In 4.59 494 At face-centered positions
of the conventional cell
Sn (white) 5.82 3.17 At000,044,403,444,

with respect to the axes
of the conventional cell

“ The common length of two perpendicular primitive vectors is a, and the
length of the third, perpendicular to these, is c. Both examples have centered
tetragonal Bravais lattices, indium with a one-atom and white tin with a two-
atom basis. However, both are more commonly described as simple tetragonal
with bases. The conventional cell for indium is chosen to stress that it is a
slightly distorted (along a cube edge) fcc structure. The white tin structure
can be viewed as a diamond structure compressed along one of the cube axes.
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Table 7.7
ELEMENTS WITH ORTHORHOMBIC BRAVAIS LATTICES®
ELEMENT a(A) b (A) ¢ (A)
Ga 4511 4517 7.645
P (black) 3.31 4.38 10.50
Cl (113 K) 6.24 8.26 4.48
Br (123 K) 6.67 8.72 4.48
| 7.27 9.79 4.79
S (rhombic) 10.47 12.87 24.49

a The lengths of the three mutually perpendicular primitive vectors are
a, b, and ¢. The structure of rhombic sulfur is complex, with 128 atoms
per unit cell. The others can be described in terms of an eight-atom unit
cell. For details the reader is referred to Wyckoff.

PROBLEMS

1. (a) Prove that any Bravais lattice has inversion symmetry in a lattice point. (Hint: Express
the lattice translations as linear combinations of primitive vectors with integral coefficients.)
(b) Prove that the diamond structure is invariant under an inversion in the midpoint of any

nearest neighbor bond.

2. (a) Ifthree primitive vectors for a trigonal Bravais lattice are at angles of 90° to one another,
the lattice obviously has more than trigonal symmetry. being simple cubic. Show that if the
angles are 60° or arc cos (—%) the lattice again has more than trigonal symmetry, being face-

centered cubic or body-centered cubic.
(b) Show that the simple cubic lattice can be represented as a trigonal lattice with primitive

vectors a; at 60° angles to one another, with a two-point basis +%(a;, + a, + a3). (Compare
these numbers with the crystal structures in Table 7.5.)

(c) What structure results if the basis in the same trigonal lattice is taken to be +5(a; +
a, + a;)?

3. If two systems are connected by arrows in the symmetry hierarchy of Figure 7.7, then a
Bravais lattice in the more symmetric system can be reduced to one of lower symmetry by an
infinitesimal distortion, except for the pair hexagonal-trigonal. The appropriate distortions have
been fully described in the text in all cases except hexagonal-orthorhombic and trigonal-
monoclinic.

(a) Describe an infinitesimal distortion that reduces a simple hexagonal Bravais lattice to
one in the orthorhombic system.

(b) What kind of orthorhombic Bravais lattice can be reached in this way?

(¢) Describe an infinitesimal distortion that reduces a trigonal Bravais lattice to one in the

monoclinic system.
(d) What kind of monoclinic Bravais lattice can be reached in this way?

Al
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4. (a) Which of the trigonal point groups described in Table 7.3 is the point group of the
Bravais lattice? That is, which of the representative objects has the symmetry of the object shown
in Figure 7.3f?

(b) In Figure 7.9 the faces of the object of Figure 7.3f are decorated in various symmetry-
reducing ways to produce objects with the symmetries of the remaining four trigonal point groups.
Referring to Table 7.3, indicate the point-group symmetry of each object.

Figure 7.9

Objects with the symmetries
of the trigonal groups of
lower symmetry. Which is
which?

(b) (c) (d)

5. Which of the 14 Bravais lattices other than face-centered cubic and body-centered cubic do
not have reciprocal lattices of the same kind ?

6. (a) Show that there is a family of lattice planes perpendicular to any n-fold rotation axis
of a Bravais lattice, n > 3. (The result is also true when n = 2, but requires a somewhat more
elaborate argument (Problem 7).)

(b) Deduce from (a) that an n-fold axis cannot exist in any three-dimensional Bravais lattice
unless it can exist in some two-dimensional Bravais lattice.

(c) Prove that no two-dimensional Bravais lattice can have an n-fold axis withn = Sorn = 7.
(Hint: First show that the axis can be chosen to pass through a lattice point. Then argue by reductio
ad absurdum, using the set of points into which the nearest neighbor of the fixed point is taken by
the n rotations to find a pair of points closer together than the assumed nearest neighbor distance
(Note that the case n = 5 requires slightly different treatment from the others).)

7. (a) Show that if a Bravais lattice has a mirror plane, then there is a family of lattice planss
parallel to the mirror plane. (Hint: Show from the argument on page 113 that the existence of 2
mirror plane implies the existence of a mirror plane containing a lattice point. It is then enough 1o
prove that that plane contains two other lattice points not collinear with the first.)

(b) Show that if a Bravais lattice has a 2-fold rotation axis then there is a family of lattice
planes perpendicular to the axis.



